The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation

  07 April 2023

Here, we show that the F-pilus is highly flexible but robust at the same time, properties that increase its resistance to thermochemical and mechanical stresses. By a combination of biophysical and molecular dynamics methods, we establish that the presence of phosphatidylglycerol molecules in the F-pilus contributes to the structural stability of the polymer. Moreover, this structural stability is important for successful delivery of DNA during conjugation and facilitates rapid formation of biofilms in harsh environmental conditions. Thus, our work highlights the importance of F-pilus structural adaptations for the efficient spread of AMR genes in a bacterial population and for the formation of biofilms that protect against the action of antibiotics.

Further reading: Nature
Author(s): Jonasz B. Patkowski et al
Smart Innovations  
Back

OUR UNDERWRITERS

Unrestricted financial support by:

Antimicrobial Resistance Fighter Coalition

Bangalore Bioinnovation Centre

INTERNATIONAL FEDERATION PHARMACEUTICAL MANUFACTURERS & ASSOCIATIONS

BD





AMR NEWS

Your Biweekly Source for Global AMR Insights!

Stay informed with the essential newsletter that brings together all the latest One Health news on antimicrobial resistance. Delivered straight to your inbox every two weeks, AMR NEWS provides a curated selection of international insights, key publications, and the latest updates in the fight against AMR.

Don’t miss out on staying ahead in the global AMR movement—subscribe now!

Subscribe

What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!

Keep me informed