Predicting Antimicrobial Resistance Using Partial Genome Alignments
Antimicrobial resistance causes thousands of deaths annually worldwide. Understanding the regions of the genome that are involved in antimicrobial resistance is important for developing mitigation strategies and preventing transmission. Machine learning models are capable of predicting antimicrobial resistance phenotypes from bacterial genome sequence data by identifying resistance genes, mutations, and other correlated features. They are also capable of implicating regions of the genome that have not been previously characterized as being involved in resistance. In this study, we generated global chromosomal alignments for Klebsiella pneumoniae, Mycobacterium tuberculosis, and Salmonella enterica and systematically searched them for small conserved regions of the genome that enable the prediction of antimicrobial resistance phenotypes. In addition to known antimicrobial resistance genes, this analysis identified genes involved in virulence and transport functions, as well as many genes with no previous implication in antimicrobial resistance.
AMR NEWS
Every two weeks in your inbox
Because there should be one newsletter that brings together all One Health news related to antimicrobial resistance: AMR NEWS!